Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Dev Psychobiol ; 66(4): e22481, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38538956

RESUMO

This study explored the interactions among prenatal stress, child sex, and polygenic risk scores (PGS) for attention-deficit/hyperactivity disorder (ADHD) on structural developmental changes of brain regions implicated in ADHD. We used data from two population-based birth cohorts: Growing Up in Singapore Towards healthy Outcomes (GUSTO) from Singapore (n = 113) and Generation R from Rotterdam, the Netherlands (n = 433). Prenatal stress was assessed using questionnaires. We obtained latent constructs of prenatal adversity and prenatal mood problems using confirmatory factor analyses. The participants were genotyped using genome-wide single nucleotide polymorphism arrays, and ADHD PGSs were computed. Magnetic resonance imaging scans were acquired at 4.5 and 6 years (GUSTO), and at 10 and 14 years (Generation R). We estimated the age-related rate of change for brain outcomes related to ADHD and performed (1) prenatal stress by sex interaction models, (2) prenatal stress by ADHD PGS interaction models, and (3) 3-way interaction models, including prenatal stress, sex, and ADHD PGS. We observed an interaction between prenatal stress and ADHD PGS on mean cortical thickness annual rate of change in Generation R (i.e., in individuals with higher ADHD PGS, higher prenatal stress was associated with a lower rate of cortical thinning, whereas in individuals with lower ADHD PGS, higher prenatal stress was associated with a higher rate of cortical thinning). None of the other tested interactions were statistically significant. Higher prenatal stress may promote a slower brain developmental rate during adolescence in individuals with higher ADHD genetic vulnerability, whereas it may promote a faster brain developmental rate in individuals with lower ADHD genetic vulnerability.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Criança , Adolescente , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/genética , Afinamento Cortical Cerebral , Encéfalo/diagnóstico por imagem , 60488 , Herança Multifatorial
2.
Commun Biol ; 7(1): 198, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368479

RESUMO

Previous studies on Alzheimer's disease-type cognitive impairment (ADCI) and subcortical vascular cognitive impairment (SVCI) has rarely explored spatiotemporal heterogeneity. This study aims to identify distinct spatiotemporal cortical atrophy patterns in ADCI and SVCI. 1,338 participants (713 ADCI, 208 SVCI, and 417 cognitively unimpaired elders) underwent brain magnetic resonance imaging (MRI), amyloid positron emission tomography, and neuropsychological tests. Using MRI, this study measures cortical thickness in five brain regions (medial temporal, inferior temporal, posterior medial parietal, lateral parietal, and frontal areas) and utilizes the Subtype and Stage Inference (SuStaIn) model to predict the most probable subtype and stage for each participant. SuStaIn identifies two distinct cortical thinning patterns in ADCI (medial temporal: 65.8%, diffuse: 34.2%) and SVCI (frontotemporal: 47.1%, parietal: 52.9%) patients. The medial temporal subtype of ADCI shows a faster decline in attention, visuospatial, visual memory, and frontal/executive domains than the diffuse subtype (p-value < 0.01). However, there are no significant differences in longitudinal cognitive outcomes between the two subtypes of SVCI. Our study provides valuable insights into the distinct spatiotemporal patterns of cortical thinning in patients with ADCI and SVCI, suggesting the potential for individualized therapeutic and preventive strategies to improve clinical outcomes.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Maleato de Dizocilpina/análogos & derivados , Humanos , Idoso , Doença de Alzheimer/patologia , Afinamento Cortical Cerebral/patologia , Disfunção Cognitiva/diagnóstico por imagem , Encéfalo/patologia
4.
Nat Commun ; 15(1): 784, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278807

RESUMO

Cortical thinning is an important hallmark of the maturation of brain morphology during childhood and adolescence. However, the connectome-based wiring mechanism that underlies cortical maturation remains unclear. Here, we show cortical thinning patterns primarily located in the lateral frontal and parietal heteromodal nodes during childhood and adolescence, which are structurally constrained by white matter network architecture and are particularly represented using a network-based diffusion model. Furthermore, connectome-based constraints are regionally heterogeneous, with the largest constraints residing in frontoparietal nodes, and are associated with gene expression signatures of microstructural neurodevelopmental events. These results are highly reproducible in another independent dataset. These findings advance our understanding of network-level mechanisms and the associated genetic basis that underlies the maturational process of cortical morphology during childhood and adolescence.


Assuntos
Conectoma , Substância Branca , Humanos , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Conectoma/métodos , Afinamento Cortical Cerebral , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Imageamento por Ressonância Magnética
5.
J Psychiatr Res ; 171: 177-184, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295451

RESUMO

The study investigates morphometric changes using surface-based measures and logistic regression in Major depressive-disorder (MDD) and Manic-disorder patients as compared to controls. MDD (n = 21) and manic (n = 20) subjects were recruited from psychiatric clinics, along with 19 healthy-controls from local population, after structured and semi-structured clinical interview (DSM-IV, brief Psychotic-Rating Scale (BPRS), Young Mania Rating Scale (YMRS), Hamilton depression rating scale (HDRS), cognitive function by postgraduate Institute Battery of Brain Dysfunction (PGIBBD)). Using 3D T1-weighted images, gray matter (GM) cortical thickness and GM-based morphometric signatures (using logistic regression) were compared among MDD, manic disorder and controls using analysis of covariance (ANCOVA). No significant difference was found between the MDD and manic disorder patients. When compared to controls, cortical thinning was observed in bilateral rostral middle frontal gyrus and parsopercularis, right lateral occipital cortex, right lingual gyrus in MDD; and bilateral rostral middle frontal and superior frontal gyrus, right middle temporal gyrus, left supramarginal and left precentral gyrus in Manic disorders. Logistic regression analysis exhibited GM cortical thinning in the bilateral parsopercularis, right lateral occipital cortex and lingual gyrus in MDD; and bilateral rostral middle, superior frontal gyri, right middle temporal gyrus in Manic with a sensitivity and specificity of 85.7 % and 94.7 % and 90.0 % and 94.7 %, respectively in comparison with controls. Both groups exhibited GM loss in bilateral rostral middle frontal gyrus brain regions compared to controls. Multivariate analysis revealed common changes in GM in MDD and manic disorders associated with mood temperament, but differences when compared to controls.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Córtex Motor , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Bipolar/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Modelos Logísticos , Afinamento Cortical Cerebral , Imageamento por Ressonância Magnética/métodos , Mania , Biomarcadores
6.
PLoS One ; 19(1): e0295069, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38295031

RESUMO

CONTEXT: An existing major challenge in Parkinson's disease (PD) research is the identification of biomarkers of disease progression. While magnetic resonance imaging is a potential source of PD biomarkers, none of the magnetic resonance imaging measures of PD are robust enough to warrant their adoption in clinical research. This study is part of a project that aims to replicate 11 PD studies reviewed in a recent survey (JAMA neurology, 78(10) 2021) to investigate the robustness of PD neuroimaging findings to data and analytical variations. OBJECTIVE: This study attempts to replicate the results in Hanganu et al. (Brain, 137(4) 2014) using data from the Parkinson's Progression Markers Initiative (PPMI). METHODS: Using 25 PD subjects and 18 healthy controls, we analyzed the rate of change of cortical thickness and of the volume of subcortical structures, and we measured the relationship between structural changes and cognitive decline. We compared our findings to the results in the original study. RESULTS: (1) Similarly to the original study, PD patients with mild cognitive impairment (MCI) exhibited increased cortical thinning over time compared to patients without MCI in the right middle temporal gyrus, insula, and precuneus. (2) The rate of cortical thinning in the left inferior temporal and precentral gyri in PD patients correlated with the change in cognitive performance. (3) There were no group differences in the change of subcortical volumes. (4) We did not find a relationship between the change in subcortical volumes and the change in cognitive performance. CONCLUSION: Despite important differences in the dataset used in this replication study, and despite differences in sample size, we were able to partially replicate the original results. We produced a publicly available reproducible notebook allowing researchers to further investigate the reproducibility of the results in Hanganu et al. (2014) when more data is added to PPMI.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Doença de Parkinson/patologia , Córtex Cerebral/patologia , Afinamento Cortical Cerebral/patologia , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Disfunção Cognitiva/patologia , Imageamento por Ressonância Magnética , Biomarcadores
7.
Otolaryngol Head Neck Surg ; 170(3): 886-895, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38018509

RESUMO

OBJECTIVE: To investigate the association between standard pure tone and speech audiometry with neuroimaging characteristics reflective of aging and dementia in older adults. STUDY DESIGN: Prospective population-based study. SETTING: Single tertiary care referral center. METHODS: Participants from the Mayo Clinic Study of aging 60 years old or older with normal cognition or mild cognitive impairment, baseline neuroimaging, and a behavioral audiogram associated with neuroimaging were eligible for study. Imaging modalities included structural MRI (sMRI) and fluid-attenuated inversion recovery MRI (FLAIR-MRI; N = 605), diffusion tensor imaging MRI (DTI-MRI; N = 444), and fluorodeoxyglucose-positron emission tomography (FDG-PET; N = 413). Multivariable logistic and linear regression models were used to evaluate associations with neuroimaging outcomes. RESULTS: Mean (SD) pure tone average (PTA) was 33 (15) dB HL and mean (SD) word recognition score (WRS) was 91% (14). There were no significant associations between audiometric performance and cortical thinning assessed by sMRI. Each 10-dB increase in PTA was associated with increased likelihood of abnormal white-matter hyperintensity (WMH) from FLAIR-MRI (odds ratio 1.26, P = .02). From DTI-MRI, participants with <100% WRSs had significantly lower fractional anisotropy in the genu of the corpus callosum (parameter estimate [PE] -0.012, P = .008) compared to those with perfect WRSs. From FDG-PET, each 10% decrease in WRSs was associated with decreased uptake in the anterior cingulate cortex (PE -0.013, P = .001). CONCLUSION: Poorer audiometric performance was not significantly associated with cortical thinning but was associated with white matter damage relevant to cerebrovascular disease (increased abnormal WMH, decreased corpus callosum diffusion). These neuroimaging results suggest a pathophysiologic link between hearing loss and cerebrovascular disease.


Assuntos
Transtornos Cerebrovasculares , Surdez , Perda Auditiva , Humanos , Idoso , Pessoa de Meia-Idade , Imagem de Tensor de Difusão/métodos , Fluordesoxiglucose F18 , Afinamento Cortical Cerebral , Estudos Prospectivos , Neuroimagem , Envelhecimento , Perda Auditiva/diagnóstico por imagem
8.
Psychol Med ; 54(3): 611-619, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37642172

RESUMO

BACKGROUND: Clinical implementation of risk calculator models in the clinical high-risk for psychosis (CHR-P) population has been hindered by heterogeneous risk distributions across study cohorts which could be attributed to pre-ascertainment illness progression. To examine this, we tested whether the duration of attenuated psychotic symptom (APS) worsening prior to baseline moderated performance of the North American prodrome longitudinal study 2 (NAPLS2) risk calculator. We also examined whether rates of cortical thinning, another marker of illness progression, bolstered clinical prediction models. METHODS: Participants from both the NAPLS2 and NAPLS3 samples were classified as either 'long' or 'short' symptom duration based on time since APS increase prior to baseline. The NAPLS2 risk calculator model was applied to each of these groups. In a subset of NAPLS3 participants who completed follow-up magnetic resonance imaging scans, change in cortical thickness was combined with the individual risk score to predict conversion to psychosis. RESULTS: The risk calculator models achieved similar performance across the combined NAPLS2/NAPLS3 sample [area under the curve (AUC) = 0.69], the long duration group (AUC = 0.71), and the short duration group (AUC = 0.71). The shorter duration group was younger and had higher baseline APS than the longer duration group. The addition of cortical thinning improved the prediction of conversion significantly for the short duration group (AUC = 0.84), with a moderate improvement in prediction for the longer duration group (AUC = 0.78). CONCLUSIONS: These results suggest that early illness progression differs among CHR-P patients, is detectable with both clinical and neuroimaging measures, and could play an essential role in the prediction of clinical outcomes.


Assuntos
Afinamento Cortical Cerebral , Transtornos Psicóticos , Humanos , Adolescente , Estudos Longitudinais , Sintomas Prodrômicos , Transtornos Psicóticos/diagnóstico , Fatores de Risco
9.
CNS Neurosci Ther ; 30(2): e14404, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37577861

RESUMO

AIMS: Creutzfeldt-Jakob disease (CJD) is a lethal neurodegenerative disorder, which leads to a rapidly progressive dementia. This study aimed to examine the cortical alterations in CJD, changes in these brain characteristics over time, and the differences between CJD and Alzheimer's disease (AD) that show similar clinical manifestations. METHODS: To obtain reliable, subject-specific functional measures, we acquired 24 min of resting-state fMRI data from each subject. We applied an individual-based approach to characterize the functional brain organization of 10 patients with CJD, 8 matched patients with AD, and 8 normal controls. We measured cortical atrophy as well as disruption in resting-state functional connectivity (rsFC) and then investigated longitudinal brain changes in a subset of CJD patients. RESULTS: CJD was associated with widespread cortical thinning and weakened rsFC. Compared with AD, CJD showed distinct atrophy patterns and greater disruptions in rsFC. Moreover, the longitudinal data demonstrated that the progressive cortical thinning and disruption in rsFC mainly affected the association rather than the primary cortex in CJD. CONCLUSIONS: CJD shows unique anatomical and functional disruptions in the cerebral cortex, distinct from AD. Rapid progression of CJD affects both the cortical thickness and rsFC in the association cortex.


Assuntos
Doença de Alzheimer , Síndrome de Creutzfeldt-Jakob , Humanos , Doença de Alzheimer/patologia , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Síndrome de Creutzfeldt-Jakob/complicações , Síndrome de Creutzfeldt-Jakob/patologia , Afinamento Cortical Cerebral/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética , Atrofia/complicações , Atrofia/patologia
10.
Ann Neurol ; 95(2): 249-259, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37789559

RESUMO

OBJECTIVE: Tau pathology is recognized as a primary contributor to neurodegeneration and clinical symptoms in Alzheimer's disease (AD). This study aims to localize the early tau pathology in cognitively normal older people that is predictive of subsequent neurodegeneration and memory decline, and delineate factors underlying tau-related memory decline in individuals with and without ß-amyloid (Aß). METHODS: A total of 138 cognitively normal older individuals from the Berkeley Aging Cohort Study underwent 11 C-Pittsburgh Compound-B (PiB) positron emission tomography (PET) to determine Aß positivity and 18 F-Flortaucipir (FTP) PET to measure tau deposition, with prospective cognitive assessments and structural magnetic resonance imaging. Voxel-wise FTP analyses examined associations between baseline tau deposition and longitudinal memory decline, longitudinal hippocampal atrophy, and longitudinal cortical thinning in AD signature regions. We also examined whether hippocampal atrophy and cortical thinning mediate tau effects on future memory decline. RESULTS: We found Aß-dependent tau associations with memory decline in the entorhinal and temporoparietal regions, Aß-independent tau associations with hippocampal atrophy within the medial temporal lobe (MTL), and that widespread tau was associated with mean cortical thinning in AD signature regions. Tau-related memory decline was mediated by hippocampal atrophy in Aß- individuals and by mean cortical thinning in Aß+ individuals. INTERPRETATION: Our results suggest that tau may affect memory through different mechanisms in normal aging and AD. Early tau deposition independent of Aß predicts subsequent hippocampal atrophy that may lead to memory deficits in normal older individuals, whereas elevated cortical tau deposition is associated with cortical thinning that may lead to more severe memory decline in AD. ANN NEUROL 2024;95:249-259.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Estudos de Coortes , Proteínas tau/metabolismo , Afinamento Cortical Cerebral , Estudos Prospectivos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Tomografia por Emissão de Pósitrons , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Atrofia , Disfunção Cognitiva/metabolismo , Imageamento por Ressonância Magnética
11.
Schizophr Bull ; 50(2): 403-417, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38102721

RESUMO

BACKGROUND AND HYPOTHESES: Previous studies revealed innate immune system activation in people with schizophrenia (SZ), potentially mediated by endogenous pathogen recognition receptors, notably Toll-like receptors (TLR). TLRs are activated by pathogenic molecules like bacterial lipopolysaccharides (TLR1 and TLR4), viral RNA (TLR3), or both (TLR8). Furthermore, the complement system, another key component of innate immunity, has previously been linked to SZ. STUDY DESIGN: Peripheral mRNA levels of TLR1, TLR3, TLR4, and TLR8 were compared between SZ and healthy controls (HC). We investigated their relationship with immune activation through complement expression and cortical thickness of the cingulate gyrus, a region susceptible to immunological hits. TLR mRNA levels and peripheral complement receptor mRNA were extracted from 86 SZ and 77 HC white blood cells; structural MRI scans were conducted on a subset. STUDY RESULTS: We found significantly higher TLR4 and TLR8 mRNA levels and lower TLR3 mRNA levels in SZ compared to HC. TLRs and complemental factors were significantly associated in SZ and HC, with the strongest deviations of TLR mRNA levels in the SZ subgroup having elevated complement expression. Cortical thickness of the cingulate gyrus was inversely associated with TLR8 mRNA levels in SZ, and with TLR4 and TLR8 levels in HC. CONCLUSIONS: The study underscores the role of innate immune activation in schizophrenia, indicating a coordinated immune response of TLRs and the complement system. Our results suggest there could be more bacterial influence (based on TLR 4 levels) as opposed to viral influence (based on TLR3 levels) in schizophrenia. Specific TLRs were associated with brain cortical thickness reductions of limbic brain structures.


Assuntos
Esquizofrenia , Receptor 4 Toll-Like , Humanos , Receptor 4 Toll-Like/metabolismo , Receptor 1 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Afinamento Cortical Cerebral , RNA Mensageiro/metabolismo , Receptor Toll-Like 9/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
12.
J Affect Disord ; 348: 229-237, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38160887

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a prevalent mental health condition with significant societal impact. Owing to the intricate biological diversity of MDD, treatment efficacy remains limited. Immune biomarkers have emerged as potential predictors of treatment response, underscoring the interaction between the immune system and the brain. This study investigated the relationship between cytokine levels and cortical thickness in patients with MDD, focusing on the corticolimbic circuit, to elucidate the influence of neuroinflammation on structural brain changes and contribute to a deeper understanding of the pathophysiology of MDD. METHOD: A total of 114 patients with MDD and 101 healthy controls (HC) matched for age, sex, and body mass index (BMI) were recruited. All participants were assessed for depression severity using the Hamilton Depression Rating Scale (HDRS), and 3.0 T T1 weighted brain MRI data were acquired. Additionally, cytokine levels were measured using a highly sensitive bead-based multiplex immunosorbent assay. RESULTS: Patients diagnosed with MDD exhibited notably elevated levels of interleukin-6 (p = 0.005) and interleukin-8 (p = 0.005), alongside significant cortical thinning in the left anterior cingulate gyrus and left superior frontal gyrus, with these findings maintaining significance even after applying Bonferroni correction. Furthermore, increased interleukin-6 and interleukin-8 levels in patients with MDD are associated with alterations in the left frontomarginal gyrus and right anterior cingulate cortex (ACC). CONCLUSIONS: This suggests a potential influence of neuroinflammation on right ACC function in MDD patients, warranting longitudinal research to explore interleukin-6 and interleukin-8 mediated neurotoxicity in MDD vulnerability and brain morphology changes.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Interleucina-8 , Doenças Neuroinflamatórias , Afinamento Cortical Cerebral , Depressão , Interleucina-6 , Imageamento por Ressonância Magnética , Inflamação/diagnóstico por imagem
13.
Artigo em Inglês | MEDLINE | ID: mdl-38083533

RESUMO

Elevated ß oscillations (13-35 Hz) are characteristic pathophysiology in Parkinson's Disease (PD). Cortical thinning has also been reported in the disease, however the relationship between these biomarkers of PD has not been established. By comparing electrophysiological measurements with cortical thickness, this study aims to reveal the pathoetiology of disease and symptoms in PD. Preoperative magnetic resonance imaging (MRI) and intraoperative local field potentials (LFPs) were collected from 34 subjects diagnosed with PD. Cortical surfaces were reconstructed from the images, and cortical thickness was extracted from the subregions where the recording electrode was placed in M1. LFPs were preprocessed and cleaned using a semiautomatic artifact detection algorithm, then power spectral densities (PSD) were computed and periodic and aperiodic frequency components were calculated. Nonparametric Spearman rank correlations assessed the relationship between electrophysiological components (i.e. center frequency (CF), power, bandwidth, 1/f exponent, knee), with cortical thickness. According to the CF of each subject's PSD, the cohort was split into two sub-groups: low-ß peak (13-20 Hz) and high-ß peak (20-35 Hz) groups. There was a significant negative correlation between power and cortical thickness only in the high-ß subgroup (r=-0.48, p(corrected)=0.049). This relationship remained significant when correcting for age (r=-0.52,p=0.015), indicating that the effect of age on cortical thinning was not the determining factor. We did not find significant differences between UPDRS-III motor symptom scores for the low-and high-ß subgroups. Of note is the dominance of high-ß oscillatory power and its relationship with cortical thickness. As suggested by the literature, increased high-ß activity during movement may be exaggerated in PD. These findings suggest that the characteristic cortical thinning in PD causes variation in electrical activity, leading to elevated high-ß activity.Clinical relevance- This multimodal study provides additional insights on the pathophysiology and its relevance with morphology of Parkinson's Disease.


Assuntos
Córtex Motor , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Córtex Motor/diagnóstico por imagem , Afinamento Cortical Cerebral , Movimento , Imageamento por Ressonância Magnética
14.
Proc Natl Acad Sci U S A ; 120(42): e2306990120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37831741

RESUMO

Hemispheric lateralization and its origins have been of great interest in neuroscience for over a century. The left-right asymmetry in cortical thickness may stem from differential maturation of the cerebral cortex in the two hemispheres. Here, we investigated the spatial pattern of hemispheric differences in cortical thinning during adolescence, and its relationship with the density of neurotransmitter receptors and homotopic functional connectivity. Using longitudinal data from IMAGEN study (N = 532), we found that many cortical regions in the frontal and temporal lobes thinned more in the right hemisphere than in the left. Conversely, several regions in the occipital and parietal lobes thinned less in the right (vs. left) hemisphere. We then revealed that regions thinning more in the right (vs. left) hemispheres had higher density of neurotransmitter receptors and transporters in the right (vs. left) side. Moreover, the hemispheric differences in cortical thinning were predicted by homotopic functional connectivity. Specifically, regions with stronger homotopic functional connectivity showed a more symmetrical rate of cortical thinning between the left and right hemispheres, compared with regions with weaker homotopic functional connectivity. Based on these findings, we suggest that the typical patterns of hemispheric differences in cortical thinning may reflect the intrinsic organization of the neurotransmitter systems and related patterns of homotopic functional connectivity.


Assuntos
Mapeamento Encefálico , Afinamento Cortical Cerebral , Adolescente , Humanos , Vias Neurais/fisiologia , Imageamento por Ressonância Magnética , Lateralidade Funcional/fisiologia , Receptores de Neurotransmissores , Encéfalo/fisiologia
15.
Neuroimage Clin ; 40: 103531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37866119

RESUMO

Migraine is underpinned by central nervous system neuroplastic alterations thought to be caused by the repetitive peripheral afferent barrage the brain receives during the headache phase (cortical hyperexcitability). Calcitonin gene-related peptide monoclonal antibodies (anti-CGRP-mAbs) are highly effective migraine preventative treatments. Their ability to alter brain morphometry in treatment-responders vs. non-responders is not well understood. Our aim was to determine the effects of the anti-CGRP-mAb galcanezumab on cortical thickness after 3-month treatment of patients with high-frequency episodic or chronic migraine. High-resolution magnetic resonance imaging was performed pre- and post-treatment in 36 migraine patients. In this group, 19 patients were classified responders (≥50 % reduction in monthly migraine days) and 17 were considered non-responders (<50 % reduction in monthly migraine days). Following cross-sectional processing to analyze the baseline differences in cortical thickness, two-stage longitudinal processing and symmetrized percent change were conducted to investigate treatment-related brain changes. At baseline, no significant differences were found between the responders and non-responders. After 3-month treatment, decreased cortical thickness (compared to baseline) was observed in the responders in regions of the somatosensory cortex, anterior cingulate cortex, medial frontal cortex, superior frontal gyrus, and supramarginal gyrus. Non-responders demonstrated decreased cortical thickness in the left dorsomedial cortex and superior frontal gyrus. We interpret the cortical thinning seen in the responder group as suggesting that reduction in head pain could lead to changes in neural swelling and dendritic complexity and that such changes reflect the recovery process from maladaptive neural activity. This conclusion is further supported by our recent study showing that 3 months after treatment initiation, the incidence of premonitory symptoms and prodromes that are followed by headache decreases but not the incidence of the premonitory symptoms or prodromes themselves (that is, cortical thinning relates to reductions in the nociceptive signals in the responders). We speculate that a much longer recovery period is required to allow the brain to return to a more 'normal' functioning state whereby prodromes and premonitory symptoms no longer occur.


Assuntos
Anticorpos Monoclonais , Transtornos de Enxaqueca , Humanos , Anticorpos Monoclonais/efeitos adversos , Afinamento Cortical Cerebral , Estudos Transversais , Substância Cinzenta/diagnóstico por imagem , Estudos Prospectivos , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/tratamento farmacológico , Cefaleia/induzido quimicamente , Resultado do Tratamento
16.
Eur Neuropsychopharmacol ; 77: 53-66, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37717350

RESUMO

Psychomotor slowing (PS) is characterized by slowed movements and lower activity levels. PS is frequently observed in schizophrenia (SZ) and distressing because it impairs performance of everyday tasks and social activities. Studying brain topography contributing to PS in SZ can help to understand the underlying neurobiological mechanisms as well as help to develop more effective treatments that specifically target affected brain areas. Here, we conducted structural magnetic resonance imaging (sMRI) of three independent cohorts of right-handed SZ patients (SZ#1: n = 72, SZ#2: n = 37, SZ#3: n = 25) and age, gender and education matched healthy controls (HC) (HC#1: n = 40, HC#2: n = 37, HC#3: n = 38). PS severity in the three SZ cohorts was determined using the Positive and Negative Syndrome Scale (PANSS) item #G7 (motor retardation) and Trail-Making-Test B (TMT-B). FreeSurfer v7.2 was used for automated parcellation and segmentation of cortical and subcortical regions. SZ#1 patients showed reduced cortical thickness in right precentral gyrus (M1; p = 0.04; Benjamini-Hochberg [BH] corr.). In SZ#1, cortical thinning in right M1 was associated with PANSS item #G7 (p = 0.04; BH corr.) and TMT-B performance (p = 0.002; BH corr.). In SZ#1, we found a significant correlation between PANSS item #G7 and TMT-B (p = 0.005, ρ=0.326). In conclusion, PANSS G#7 and TMT-B might have a surrogate value for predicting PS in SZ. Cortical thinning of M1 rather than alterations of subcortical structures may point towards cortical pathomechanism underlying PS in SZ.


Assuntos
Córtex Motor , Esquizofrenia , Humanos , Esquizofrenia/complicações , Córtex Motor/diagnóstico por imagem , Afinamento Cortical Cerebral , Encéfalo/patologia , Imageamento por Ressonância Magnética
17.
Neuroimage Clin ; 39: 103473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531834

RESUMO

OBJECTIVE: Temporal Lobe Epilepsy (TLE) is frequently a neurodevelopmental disorder, involving subcortical volume loss, cortical atrophy, and white matter (WM) disruption. However, few studies have addressed how these pathological changes in TLE relate to one another. In this study, we investigate spatial patterns of gray and white matter degeneration in TLE and evaluate the hypothesis that the relationship among these patterns varies as a function of the age at which seizures begin. METHODS: Eighty-two patients with TLE and 59 healthy controls were enrolled. T1-weighted images were used to obtain hippocampal volumes and cortical thickness estimates. Diffusion-weighted imaging was used to obtain fractional anisotropy (FA) and mean diffusivity (MD) of the superficial WM (SWM) and deep WM tracts. Analysis of covariance was used to examine patterns of WM and gray matter alterations in TLE relative to controls, controlling for age and sex. Sliding window correlations were then performed to examine the relationships between SWM degeneration, cortical thinning, and hippocampal atrophy across ages of seizure onset. RESULTS: Cortical thinning in TLE followed a widespread, bilateral pattern that was pronounced in posterior centroparietal regions, whereas SWM and deep WM loss occurred mostly in ipsilateral, temporolimbic regions compared to controls. Window correlations revealed a relationship between hippocampal volume loss and whole brain SWM disruption in patients who developed epilepsy during childhood. On the other hand, in patients with adult-onset TLE, co-occurring cortical and SWM alterations were observed in the medial temporal lobe ipsilateral to the seizure focus. SIGNIFICANCE: Our results suggest that although cortical, hippocampal and WM alterations appear spatially discordant at the group level, the relationship among these features depends on the age at which seizures begin. Whereas neurodevelopmental aspects of TLE may result in co-occurring WM and hippocampal degeneration near the epileptogenic zone, the onset of seizures in adulthood may set off a cascade of SWM microstructural loss and cortical atrophy of a neurodegenerative nature.


Assuntos
Epilepsia do Lobo Temporal , Substância Branca , Adulto , Humanos , Substância Branca/patologia , Afinamento Cortical Cerebral/patologia , Imageamento por Ressonância Magnética , Imagem de Tensor de Difusão , Convulsões/patologia , Substância Cinzenta/patologia , Atrofia/patologia
18.
Psychiatry Res ; 327: 115345, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37516039

RESUMO

A considerable proportion of individuals exposed to trauma experience chronic and persistent posttraumatic stress disorder (PTSD). However, the specific brain and clinical features that render trauma-exposed individuals more susceptible to enduring symptoms remain elusive. This study investigated 112 trauma-exposed participants who had been diagnosed with PTSD and 112 demographically-matched healthy controls. Trauma-exposed participants were classified into those with current PTSD (persistent PTSD, n = 78) and those without (remitted PTSD, n = 34). Cortical thickness analysis was performed to discern group-specific brain structural characteristics. Coping strategies and resilience levels, assessed as clinical attributes, were compared across the groups. The persistent PTSD group displayed cortical thinning in the superior frontal cortex (SFC), insula, superior temporal cortex, dorsolateral prefrontal cortex, superior parietal cortex, and precuneus, relative to the remitted PTSD and control groups. Cortical thinning in the SFC was associated with increased utilization of maladaptive coping strategies, while diminished thickness in the insula correlated with lower resilience levels among trauma-exposed individuals. These findings imply that cortical thinning in brain regions related to coping strategy and resilience plays a vital role in the persistence of PTSD symptoms.


Assuntos
Regulação Emocional , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Afinamento Cortical Cerebral , Encéfalo , Córtex Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética
19.
Mov Disord ; 38(10): 1871-1880, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37492892

RESUMO

BACKGROUND: Degeneration of the cortically-projecting cholinergic basal forebrain (cBF) is a well-established pathologic correlate of cognitive decline in Parkinson's disease (PD). In Alzheimer's disease (AD) the effect of cBF degeneration on cognitive decline was found to be mediated by parallel atrophy of denervated cortical areas. OBJECTIVES: To examine whether the association between cBF degeneration and cognitive decline in PD is mediated by parallel atrophy of cortical areas and whether these associations depend on the presence of comorbid AD pathology. METHODS: We studied 162 de novo PD patients who underwent serial 3 T magnetic resonance imaging scanning (follow-up: 2.33 ± 1.46 years) within the Parkinson's Progression Markers Initiative. cBF volume and regional cortical thickness were automatically calculated using established procedures. Individual slopes of structural brain changes and cognitive decline were estimated using linear-mixed models. Associations between longitudinal cBF degeneration, regional cortical thinning, and cognitive decline were assessed using regression analyses and mediation effects were assessed using nonparametric bootstrap. Complementary analyses assessed the effect of amyloid-ß biomarker positivity on these associations. RESULTS: After controlling for global brain atrophy, longitudinal cBF degeneration was highly correlated with faster cortical thinning (PFDR < 0.05), and thinning in cBF-associated cortical areas mediated the association between cBF degeneration and cognitive decline (rcBF-MoCA = 0.30, P < 0.001). Interestingly, both longitudinal cBF degeneration and its association with cortical thinning were largely independent of amyloid-ß status. CONCLUSIONS: cBF degeneration in PD is linked to parallel thinning of cortical target areas, which mediate the effect on cognitive decline. These associations are independent of amyloid-ß status, indicating that they reflect proper features of PD pathophysiology. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Disfunção Cognitiva , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Prosencéfalo Basal/diagnóstico por imagem , Afinamento Cortical Cerebral/patologia , Testes Neuropsicológicos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/complicações , Peptídeos beta-Amiloides , Doença de Alzheimer/patologia , Atrofia/patologia , Imageamento por Ressonância Magnética/métodos
20.
Neuroimage ; 277: 120265, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37414234

RESUMO

BACKGROUND: Major depressive disorder (MDD) is associated with widespread, irregular cortical thickness (CT) reductions across the brain. However, little is known regarding mechanisms that govern spatial distribution of the reductions. METHODS: We combined multimodal MRI and genetic, cytoarchitectonic and chemoarchitectonic data to examine structural covariance, functional synchronization, gene co-expression, cytoarchitectonic similarity and chemoarchitectonic covariance between regions atrophied in MDD. RESULTS: Regions atrophied in MDD were associated with significantly higher structural covariance, functional synchronization, gene co-expression and chemoarchitectonic covariance. These results were robust against methodological variations in brain parcellation and null model, reproducible in patients and controls, and independent of age at onset of MDD. Despite no significant differences in the cytoarchitectonic similarity, MDD-related CT reductions were susceptible to specific cytoarchitectonic class of association cortex. Further, we found that nodal shortest path lengths to disease epicenters derived from structural (right supramarginal gyrus) and chemoarchitectonic covariance (right sulcus intermedius primus) networks of healthy brains were correlated with the extent to which a region was atrophied in MDD, supporting the transneuronal spread hypothesis that regions closer to the epicenters are more susceptible to MDD. Finally, we showed that structural covariance and functional synchronization among regions atrophied in MDD were mainly related to genes enriched in metabolic and membrane-related processes, driven by genes in excitatory neurons, and associated with specific neurotransmitter transporters and receptors. CONCLUSIONS: Altogether, our findings provide empirical evidence for and genetic and molecular insights into connectivity-constrained CT thinning in MDD.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Afinamento Cortical Cerebral , Encéfalo , Córtex Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...